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A computer code (KITE) that solves a reduced set of magnetohydrodynamic (MHG) 
equations with diamagnetic and thermal force effects included has been constructed. It can use 
two different time integration schemes. A mostly-explicit time integration scheme is shown to 
be efficient for the nonlinear phase of tearing mode turbulence where numerical stabtiity 
demands a small timestep. However, for linear calculations, or nonlinear ones in which the 
level of turbulence is low, a mostly-implicit approach is seen to be more efficient. The two 
numerical schemes yield the same solutions. Nonlinear MHD calculations in ivhich the 
solrutions are represented by a finite Fourier series allow one to study the dependence of the 
nonhnear soluticn on its permitted harmonic content. It is seen that for the 3-dimensional 
t3D), nonlinear, tearing mode disruption problem. the rehnement of the solution bj; the 
addition of more modes leads to further destabilization. This contrasts to the rippling mode 
problem. in which the addition of modes is stabilizing. For the latter, a finite number or 
modes yields a converged solution that is a saturated state This contrasting behavior reflects 
the basic physical mechanism of the nonlinear interaction in each case and not the particuiar 
numericai scheme used for the calculations. 

1. INTRODUCTION 

The resistive MHD model has been used in formulating possible explanations for 
disruptions and enhanced transport in tokamak discharges. For many of these 
phenomena, the basic physics can be understood using the reduced set of M 
equations [ 13, derived from the full resistive MHD equations with the standard 
tokamak (inverse aspect ratio) ordering and the assumption of a low-/3 plasma. 
This reductions in the number of equations and the consequent elimination of the 
fast Alfven waves allow the efficient study of 3-dimensional (3D) nonlinear 
evolution. Numerous such calculations that have led to a better understanding of 
experimental tokamak data have been carried out in recent years [2]. 

In the first studies of nonlinear resistive MHD, we extensively used the code RSF 
[3, 41, which solves the reduced set of equations in a periodic plasma cylinder. The 
resistivity evolution is included through an electron heat conduction equation The 
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numerical scheme is explicit, except for convective and resistive diffusion terms. 
This approach is optimized for the nonlinear phase of tearing mode calculations. 
However, this scheme is not as efficient for other calculations in which it may 
require an unnecessarily small timestep. In addition, RSF is a pure resistive MHD 
code and does not include the effects of viscosity, diamagnetism [S], and thermal 
force [6]. 

In this paper we describe a new code, KITE, that has been devised to study these 
effects and to relax the timestep limitations of RSF. This nonlinear code includes 
the density and temperature evolution, together with the magnetic flux and momen- 
tum balance equations. Two time integration schemes have been developed: one, 
“mostly-explicit, ” is a generalization of the RSF scheme, while the other, “mostly- 
implicit,” uses a fully implicit scheme for the linear terms and is more eflicient in the 
linear regime. It is also more efficient in nonlinear calculations when the saturation 
level of the modes is low and the physical parameters force the explicit scheme 
timestep to be very small. Both schemes, however, yield the same solutions. Both 
RSF and KITE represent solutions using finite difference in minor radius and a 
Fourier series expansion in the two periodic coordinates. 

We also consider two physics examples to illustrate the strengths of each 
numerical scheme. The saturation of resistivity-gradient-driven rippling modes [ 71 
is due to the balance between parallel diffusion and the turbulent radial diffusion of 
the resistivity perturbations induced by nonlinear convection. Due to its intrinsic 
turbulent character, this saturation cannot be observed numerically when an insuf- 
ficient number of modes are included in the computation. Increasing the number of 
modes in the representation of the solution increases the stabilizing effect. Con- 
vergence studies with respect to the number of modes yield the converged saturated 
state. On the other hand, in a disruption caused by the nonlinear interaction of 
tearing modes, the picture is just the opposite. The final phase of the disruption is 
characterized by nonstationary, growing turbulence [4, 81. Numerically, a non- 
physical, saturated state can be observed when a low number of modes is included 
in the calculation [4,9]. However, this is not a converged solution to the problem. 
As the number of modes numerically represented in the calculation is increased, 
more and more modes are excited, and low-m modes are further destabilized. So, 
unlike the rippling mode case, the addition of modes is destabilizing. The number of 
modes required for a converged solution continues to increase as the solution 
evolves with time. Conversely, a calculation using a fixed number of modes yields a 
valid solution only up to a particular time. This contrasting behavior reflects the 
basic physics mechanism of the nonlinear interaction and is independent of the 
numerical scheme used for the calculation. 

The equations used in the code are discussed in Section 2. Section 3 is devoted to 
the description and comparison of the numerical schemes, while Section 4 describes 
the convergence studies, with special emphasis on convergence with respect to the 
number of modes. Finally, Section 5 contains the conclusions. 
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2. EQUATIONS 

The equations used in KITE are an extended version of the reduced set of 
resistive MHD equations [ 11, including diamagnetic and electron temperature 
effects. The addition of diamagnetic effects has been discussed in [5, 10, 1 l]. The 
effect of the thermal force and an equation for the electron temperature, derived 
from the two-fluid MHD equations [6, 121, have been included. The equations are 
solved in cyiindrical geometry using an (r, 6, i) coordinate system, where c 
(0 < r < 1) is the radial coordinate normalized to the radius of the cylinder ti, 2 
(0 < B < 2~ j is the poloidal angle, and i’ (0 < i < 271) is an angle-like coordinate such 
that 5 = 27rZ/L, where Z is the coordinate along the axis of the cylinder of length E. 
For analogy with toroidal geometry, we shall refer to i as the toroidal angle, the 
unit vector [ in that direction as the toroidal direction, and R = L/277 as the major 
radius of the torus. In dimensionless form, the equations are 

?Te 
ar - -yL 
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1 
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,I = y:, (le) 

where !P is the poloidal magnetic flux function, related to the magnetic field by 
;^- EVY x [, with E = 2najL the inverse aspect ratio of the cylinder; J; is the tor 
component of the current density, given by J, = V:_ Y; JJ, p, and T, are, respectively, 
the resistivity, mass density, and electron temperature, normalized to their magnetic 
axis values; CD is the velocity stream function, related to the poloidal fluid velocity 
by vI = V@ x 4; U is the toroidal component of the vorticity, given by pi= 
V ’ (pV, @). Here, I denotes perpendicular to [? and V,, = a/~?[ - (V !P x f). V is 
gradient parallel to the magnetic field. The time t is normalized to the polo; 
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Alfvtn time rHP = R/v,, where uA is the poloidal Alfven velocity vA = 
~JCPo4~iwl . ‘I2 The magnetic field is normalized to the constant toroidal field. 
The dimensionless parameters appearing in the equations are S ( = r&HP), the 
ratio of the resistive time to the poloidal Alfven time, where tR = poa2/q(0); o,, 
C=tb@ T,(0)/ea2B,]; and CIJ,~ [ = -r,, Ti(0)/Zea2B,], the electron and ion 
diamagnetic frequencies, respectively, normalized to 5~;; w,,. ( = oCiz,,), where oCi 
is the ion cyclotron frequency; R, ( = - lO~,~r~/3w,~), the coefficient of the perpen- 
dicular viscosity, where ri is the ion collisional time; R,, the perpendicular mass dif- 
fusion coefficient; XI, ( = 2z,,rc;/3R2n,), and Xl ( = 2z,,K;/3a2n,)y the parallel and 
perpendicular electron heat conductivities, respectively, while CI has the value 0.71 
c121. 

The code allows the study of different physical phenomena, depending on which 
terms are included in the evolution equations. Tearing modes can be studied with 
only the magnetic flux and vorticity equations [13] and taking p, T,, and rj con- 
stant in time. The introduction of self-consistent resistivity evolution through the 
electron temperature equation, using the Spitzer relation between resistivity and 
electron temperature (v] = Tp3”2), allows the calculation of resistivity-driven 
processes, such as turbulence due to rippling modes [7, 141. Diamagnetic effects on 
the stability of resistive modes can be studied by adding the density equation and 
introducing the density gradient terms in the other equations [S]. Finally, the 
equations can also include thermal force effects through the temperature gradient 
term. 

All the fields can be represented by two components, equilibrium and pertur- 
bation: 

f(r, 6, [) = p(r) + T(r, 8, 0. (2) 

where the perturbation is written as an expansion in sines and cosines, 

fh 4 0 = 1 Cfh, cos(m0 + n[) + ff, sin(m8 + ni)]. (3) 
m.n 

The equilibrium is an exact, steady state, velocity-free solution of Eq. (1). For such 
a state, @ = U = 0. Thus, Eq. (1) yields 

a!P 1 
- = 5 (t/J;” - I??), 

at 

and 

au=q wq=~=o. -=- 
at at at 

From the momentum balance equation, 

(da) 

(4b) 

V J-=0 II: ’ (5) 
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which implies that J;q and, therefore, !Peq are only functions of r. To avoid the 
resistive decay of the equilibrium magnetic flux: Eq. (4a), we can set 

f”(r) = [p(r)] - i Ey. (a i 

An equilibrium can be specified by fixing Yeq(r), which in turn is given by the safety 

factor profile q through the relation 
d’y”” -=--5 

dr q(r)’ 
(31 

The equihbrium electron temperature is also a function of r only and is related .:o 
the resistivity through the Spitzer relation 

y-y = (f”) -2.3, isj 

while the ion temperature and equilibrium mass density have specified profiiles. For 
the calculations shown here, wei = 0, and the equilibrium mass density is also a 
function of P only and has been parameterized as follows: 

where p0 is a parameter that we have taken to be 1 or 0.5. Thus, only two profiles, 
namely CJ and prq, are needed to specify an equilibrium. 

The boundary conditions are that the radial magnetic field and velocity are zero 

at the conducting wall. That is, !P and @‘, as well as the perturbation of .Q and T,* 
vanish at the cylindrical wall: 

Y(l,%, <)=@(l, %, <) =o, i4aj 

pi1, 8, <)= Fe(l, e, i’)=O. i9bj 

To perform a stability calculation, it is necessary to add a small <- and/or N- 
dependent perturbation to the equilibrium. Depending on the characteristics of the 
problem, the magnetic flux Y or the velocity field @ is initiahy perturbed. For a. 
tearing mode calculation, since it is dominated by a magnetic mode. we initially se! 
CD 111.11 = 0, and an initial 9 is given by 

where r, is the radius of the singular surface, q(r,) = m/n, q’ = dq!dr / ~5~ and Wjn,? is 
the approximate initial island width. For a rippling mode calculation, since it is 
dominated by an electrostatic mode, we initially set p,,,, = 0 and 
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where fS = rS + lY r is an arbitrary parameter that gives the desired width in radius 
of the initial perturbation. One or several modes of the same helicity can be 
initialized by using Eqs. (10) or (11) in order to study a 2-dimensional (2D) single- 
helicity time evolution. Alternately, by initializing several modes of different 
helicities (m/n) one can perform a 3D calculation. The solution is, in general, 
independent of the radial dependence of the initial perturbation as long as the per- 
turbation is sufficiently small. The precise choice of the initial perturbation is made 
in order to approach the linear solution as quickly as possible. 

From Eq. (1 ), when 0,; = 0, the energy-balance equation is 

(12) 

where EK, EM, and ET are the kinetic, magnetic, and thermal energies of the 
plasma. They are given by 

E, =;jSrp ,V,@,‘, (13) 

where 

EM=;jd3r,YLY’,2, 

ET =;+jd3rpTe_ 

(14) 

(15) 

The energy source is due to the applied toroidal electric field and is given by 

Q,=+E;Uj”‘J’=-& jdnW. (16) 

Finally, there are several sinks of energy, 

Q, = i j d3rr$, 

Qv = f 1 d3r@V: U, 
* (18) 

Qv, = & 1 d3rv:Vl, Jc, 
C) 

QD =f[~jBrv~V~(p-p-‘)-~~j ~~~i(p-p~q)], (20) 
P 

(21) 
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where Q, is the rate of energy dissipation due to Joule heating, Q,, and Qv; are tk 
rates of energy dissipation due to viscosity, and Q, and & are the rates of energy 
dissipation due to diffusion in density and temperature, respectively. Each of the 
energy terms can be expressed as the sum of individual mode energies; for example. 

E,, = c E,(nz; n). (pz’ ? 
m,n 

where 

In the implementations of Eq. (1) to be described shortly, the energy-balance 
equation (Eq. (12)) is not part of the dynamics. Therefore, as a diagnostic it 
provides a test for numerical error. We define a total cumulative energy-balance 
error of 

where the right side is obtained by numerically evaluating Eqs. ( 13) to 1.2: ) and E’ 
denotes the energy at the beginning of the calculation. This will contain AE. and d? 
truncation error, both from the dynamic solution and from the evaluation oil 
Eq. (24) itself. 

The energy conservation equation is not only useful for testing the numerics in 
the evolution, but, more important, is a guide to which terms in the equations are 
related to the physical effects being studied. 

The instantaneous growth rates and real frequencies, defined for each scalar kid 
by 

“,_ ~rdr[f~,(t+At)2+f~~,,(t+dt)‘-f~~,i?)2--f~~,(f)”~ 
’ - dt~rdr[f~,,(tfAt)‘+f~,,(t+dr?2+f~~,~tj’Cf:,,(r~2l’ 

,sg) 
I- ’ 

w-=~rdrCf”(t+dr)f’(t)-f’(t+otj,f”(r)] 
AtJ r dr[f’(tj* i-f’(tj2] ’ 

12fli I 

are useful diagnostics for describing the mode behavior during the evolution. They 
allow us to determine energy flows and saturation and can be used also in 
rmmerical tests for convergence. 
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3. NUMERICAL SCHEMES 

Two different methods are used to solve the equations. Their relative efficiency 
depends on the type of calculation. Both methods use a representation that is finite 
difference in r and spectral in 19 and [. 

Each scalar field is written as an expansion in sines and cosines (Eq. (3)). The 
resulting “modes” are functions of r represented on a finite-difference grid. First and 
second radial derivatives are performed with three-point finite-difference formulas 
that allow unequal spacing. Derivatives in 6 and i are performed analytically. All 
quantities are stored in spectral form (Eq. (3)) and are never transformed to a 
finite-difference grid in 0 or [. The convolutions are performed analytically, rather 
than by using fast Fourier transforms. 

In addition to specifying the radial grid points, it is necessary (for nonlinear 
calculations) to choose a finite set of modes ((nz; n) pairs) to be included in the 
expansions (Eq. (3)). We have developed procedures for selecting relatively optimal 
sets of modes [3]. A few dominant modes are chosen, based on the physics of the 
problem to be studied. Then, a sequence of mode sets can be obtained from suc- 
cessive application of the nonlinear couplings [3]. Thus, different physics problems 
tend to be calculated with different numbers of modes, as can be seen in the figures. 
For the calculations shown here, the dominant modes fall in a band in (in; n) space. 
However, convergence with respect to mode truncation must be demonstrated by 
varying the choice of modes included. 

The difference between the two schemes presented here lies in the treatment of 
the linear terms and the order of accuracy of the time integration. The following 
sections present a detailed description of both schemes. 

3.1. The Most& Explicit Scheme 

In this scheme, the time integration is second-order accurate and, except for the 
diffusive terms, is explicit. The technique was first described in [3] for only the Y 
and U equations. 

For advancing Eqs. (1) from t to t + At, first U and p are advanced to t + At/2 
using 

u r+31:2 - U’ 
At/2 

(27) 

P I + AC,‘2 -p* dpeq 

At/2 
= --&+p+ [p: CD’] +$v,, Jg 

‘.I 

+ f vL?p”1+ m 

P 
(28) 
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Next~ F and T, are advanced: 
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T’+Al- T’ 
P e 

At 

Here, 

d7e“ 
--&V,@ r+Al:2+ [pc+Ar!2, @t+Ar:2] 

J:+4t12V,,~c+AY2+1 
L 3( 

1 + c1) T~+"'i2V,,&+ At/2 

2 1 
--___ J’ + Al/2 

3 P;h&4nr/2 i 
Tt+AliZV -r+dr!Z 

s IIP 1 . 

[a, b] = VBaV,b - V,aV,b, 

and 

(35) 

with p evaluated at t in Eqs. (27) to (30) and at t + At/2 in Eqs. (31) to (34). .4 
procedure to reduce the timestep whenever a numerical instability becomes 
significant has been developed [4]. In effect, this tolerates situations that are at the 
numerical instability boundary. This is desirable in a calculation in which the 
physical solutions are growing. To verify that a numerical instability is not affecting 
the solution, it is necessary to compare calculations performed with different 
timesteps or different numerical schemes. 

3.2. The Mostly Implicit Scheme 

In this scheme the nonlinear terms are explicit and first-order accurate in time, 
and the linear terms are treated implicitly, with the order of accuracy dependent on 
a parameter W: 

u ‘+“- WAtT;“‘= U’- WAtT;+AtS,, (36a) 

P I+‘*- WAtT;+“‘=p’- WAtT;+AtS,, Wb) 

!PVrt4’- WAtTjt4’= Y”- WAtT;+AtS,, (36~) 
Tt+A’- 

e WAtTi+*‘= T:,- WAtT;+AtS,, (36d) 
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where 

and where 

v + dr = v. (p& VW+“‘). (4ial 

where S, to S, is the right side of Eqs. (31) to (34 ), evaluated at : instead cf 
f c dt:‘J. 

The equations in (36) are solved as a block-tridiagonal system. Since only linear 
terms are treated implicitly and since the geometry is cylindrical, the matrix does 
not couple the terms in Eq. (3) that have different (m, IZ) values. The variables @,, g- 
!P, T,, and U are included in the solution vector to get a sotvabie system. When 
diamagnetic and thermal force effects are not included in the equations, the sine 
and cosine terms decouple, and the representation can be simphfied by taking only 
cosine terms in Y. p, and T, and sine terms in @ and li, giving 5 x .5 block matrices. 
When these effects are included, the blocks become 10 x 16. The number of such 
blocks on the main diagonal is given by the number of grid points in the radial 
direction. This finite matrix problem is solved with the routine BTMS [IS]. 

The parameter IV in Eq. (36) is set to i for linear problems, making the scheme 
second-order accurate in time. When the timestep is of the order of the inverse of 
the eigenvalue, the resulting time evolution cannot be considered a solution of tie 
initial value problem. However, as has been shown in [16], the implicit method 
becomes an iteration scheme for solving the eigenvalue problem with df interpreied 
as the convergence parameter. Convergence to the linear solution is very rapid. 
Srnce for linear problems we are not interested in the time evolution but only in the 
eigenvalue and eigenfunction, the convergence parameter is only limited by the 
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magnitude of the eigenvalue, allowing very rapid convergence. Conversely, for non- 
linear problems we are mainly interested in the time evolution. In this case, At = 
lo-‘/max(y, w,.) is chosen for the initial timestep. Subsequent evolution requires 
reduction of the timestep due to changes in instantaneous growth rates and fre- 
quencies and the effects of nonlinear terms. W is usually set to 1 for nonlinear 
problems since this choice allows for larger timesteps. Since the nonlinear terms are, 
in any case, only first-order accurate in time, there is little reason to make the linear 
terms more accurate. 

3.3. Comparison of Schemes 

For linear calculations the convergence parameter is only limited by the 
magnitude of the eigenvalue, so the implicit scheme always converges more rapidly 
than the mostly-explicit scheme. Although the mostly-explicit method is faster per 
step, stability constraints require a small timestep that leads to a large number of 
steps for convergence. There is no noticeable difference between the converged 
growth rates and eigenfunctions obtained with both methods. In addition, as an 
iterative method, the implicit scheme can be used to obtain not only the fastest 
growing mode, but also the spectrum of unstable eigenvalues and eigenfunctions by 
varying the convergence parameter At. Both facts make the implicit method more 
convenient for linear calculations. 

In the case of nonlinear calculations, the relative efficiency of schemes depends on 
the size of the nonlinear terms. Therefore, the efficiency depends on the problem 
being studied. However, the results themselves are independent of the scheme used. 
We next discuss three different calculations that typify different regions of efficiency 
for the two numerical schemes: 

1. Disruption studies. These calculations involve the nonlinear interaction of 
low-m tearing modes of different helicities. During the initial phase of the 
calculation, the spectrum is clearly dominated by the very low-n? linearly unstable 
tearing modes (m = 2 and m = 3) with large amplitudes (B/B, of a few percent). The 
evolution of the (m = 2; II = 1) mode is practically the same as in the case of single- 
helicity, while the (m = 3, y1= 2) mode shows a strong destabilization, in agreement 
with analytical predictions [17, 181. Later in the calculation, an explosive growth 
involving many modes is observed. This is a physical effect, as has been shown in 
analytic studies [8] and by performing the calculation with different schemes. The 
nonlinear terms dominate over the linear terms during much of the calculation. As 
the size of the nonlinear terms increases, the timestep for the implicit scheme must 
be reduced. When the nonlinear terms dominate, the timestep of the implicit scheme 
is limited to a value similar to the one used in the explicit scheme. Since the time to 
calculate a step with the implicit scheme is, for a run using 106 modes, about three 
times larger than for the explicit scheme, the latter becomes more efficient. This 
ratio changes with the number of modes included in the calculation and is less 
severe for higher numbers of modes when the relative computational time spent in 
convolutions is larger; it always, however, favors the explicit scheme. The results 
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themselves do not depend on the numerical scheme employed. Only when one 
looks at details, such as the total cumulative energy-balance error dET defined in 
Eq. (24), can one observe some differences because the mostly-implicit scheme is At 
accurate, while the mostly-explicit scheme is At2 accurate. Comparisons of results 
from the two methods are shown in the next section 

2. Calculations of turbulence at the tokanzak edge. The model used in this 
type of calculation is based on the nonlinear evolution of rippling modes of differen: 
helicities. A saturated, turbulent, steady state situation is obtained. The leve! of 
saturation of these resistivity-driven modes is low ( B/B0 on the order of IV”). 
Thus, the linear terms dominate over the nonlinear terms throughout the 
calculation. Consequently, the implicit scheme timestep is essentially limited by the 
fastest growing mode. In contrast to the disruptive cases, the basic effect of the 
high-m turbulence is to stabilize the low-m modes and to cause the saturation. This 
phenomenon has been studied in detail in 1’7’1 and carefully tested numerizaily. 
Increasing the rmmber of high-m modes, and, as a consequence, the number of con- 
linear couplings, leads to a saturated state without the need of strongly decreasing 
the timestep in the implicit method. The timestep needed using the explicit method 
for the same type of calculation is much smaller due to stability requirements, but. 
as in the case of tearing modes, the results obtained are the same. The difference in 
timestep is more pronounced for higher values of S and ;C,,. Figure 1 compares the 
change in the timestep At during computations using the mostly-implicit and 
mostly-explicit schemes.The timestep comparison is for a calculation -with 49 modes, 

10’ 

100 

FIG. 1. Change in the timestep dt during the evolution for computations of resistivity-driven ttlr- 
bulence using the mostly-implicit and mostly-explicit schemes. The time to calculate a step with the 
:mplicit scheme is about four times larger than for the explicit-scheme for this case. 
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227 grid points, and with the physical parameter q = 1 + (r/0.632)“, S = 105, and 
j,, = 2.5. The initial ratio between timesteps is 100 and remains practically the same 
during the whole evolution. The mostly-explicit scheme is only four times faster in 
number of steps per unit of computational time. This makes the mostly-implicit 
scheme about 25 times faster than the mostly-explicit one and, therefore, more 
efficient for this type of calculation. This saving in computational time allows us to 
carry out calculations including up to 200 modes and 200 grid points, which is the 
limit set by the memory size of our present computer. This calculation would be 
impossible to perform in a reasonable amount of time using the mostly-explicit 
scheme. 

3. Drift-tearing modes. When diamagnetic effects are included in the 
calculation, w;, becomes the shortest timescale for realistic parameter values. Due 
to this, the timestep is severely reduced for the mostly-explicit scheme. However, the 
dependence on o*, is much weaker for the mostly-implicit scheme. This makes, in 
general, the mostly-implicit scheme more appropriate at the beginning of the com- 
putation. However, due to nonlinear effects, the timestep corresponding to the 
mostly-implicit scheme must be reduced faster than in the mostly-explicit case, 
reaching a point when the mostly-implicit scheme is no longer more economical 

EXPLICIT 

I-- lb) 

i 

FIG. 2. Change in the timestep At during single-helicity computations of drift-tearing modes using 
the mostly-implicit and mostly-explicit schemes. The ratio of computational time per step between both 
schemes is about ten. The island width evolution is also shown. 
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than the mostly-explicit one. This is the case for moderate w.+, values (ojj, 5 I@~; 
when the mostly-implicit scheme is more efficient at the beginning of the csrn- 
putation, but the ratio between timesteps is < 100. Using both numerical schemes, 
we have calculated the nonlinear single-helicity evolution of the rr? = 2, i? = 1 dri%- 
tearing mode. Thermal force effects were also included in these calcuiations. The 
equilibrium is characterized by q = l.GS[l + (r/0.53) 4!1,‘, S= 8.85 x lo’, j,, = i :.56, 
and w*, = 1.2 x 1GP3. This corresponds to a toroidal field of 9 kG, central peak ion 
density of 7 x IO’” cmP3, and central electron temperature of 240 eV. Six modes and 
280 grid points were used. The comparison of the timestep evolution for his 
calculation is shown in Fig. 2. At the beginning of the computation, the timestep for 
the mostly-implicit sheme is 100 times larger than for the mostly-explicit case, bur 
this factor is reduced to < 10 when the island width is - 1 I%, at which point the 
mostly-implict scheme is no longer the most economical since the computationak 
time per step in the implicit method is a factor of ten larger than for the most:?- 
explicit scheme. The overall calculation time is optimized by switching from tb.e 
implicit to the explicit scheme at the appropriate time 

4. NUMERICAL CONVERGENCE 

In these calculations, there are five possible sources of numerical error: 

i. roundoff, 
2. numerical instability, 
3 _. truncation error due to finite timestep (4t truncation), 
4. truncation error due to a finite spectrum of modes (mode truncation j, and 
5. truncation error due to finite grid in I’ (A? truncation). 

These sources of error have been discussed in detail in 143. 
These calculations have been performed on a GRAY-1 computer, one that rhe 

floating point format provides a 48-bit ( 14 + decimal-digit) mantissa. A compiier 
option exists that implements lower accuracy arithmetic. Calcuiations using X-bit 
mantissas showed that roundoff error is insigniticant in these calculations, 

If the timestep is too large, a numerical instability grows rapidly. Such an 
instability is easily identified by its rapid growth, as well as its nonphysical shape. 
The timestep control procedure searches for these numerical instabilities and, when 
one is detected, reduces the timestep to stabilize it [3,4]. 

To investigate the role of At truncation, two disruption calculations {Fig. 3; are 
compared. In each case, the magnetic energy (I$) curves agree, but some effects 
can be seen n-r AET. The mostly-implicit integrator is order At accurate, compared 
with the mostly-explicit integrator that is order A!‘, and, thus, the former yields a 
somewhat larger value of AE, since it contains more dr truncation error. Bu: the 
fact is that the solution itself is not sensitive to the choice of scheme. 

It is especially interesting to compare the different physics calculations discussed 
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t/THp 

FIG. 3. The time history of ilr truncation error 4E, for two disruption calculations with 200 grid 
points and 11 modes, using the mostly-implicit and mostly-explicit schemes. The value of S is 10’. The 
equilibrium is characterized by a q-profile q = 1.344[1 + (r;0.56)6.“8]‘J3.2“. The solutions, as can be seen 
from the time history of the magnetic energies of the three largest modes E,(2; I), E,(3; 2) and 
E,(j; 3) are the same for both calculations. The timestep used in both methods is the same, and changes 
from 7.6 x IO-’ to 2.5 x IO-’ r,.,, during the evolution. 

in the previous section. Due to the opposite dynamical effects of the turbulent 
background on the stability of the low-m modes, the comparison of the mode spec- 
trum convergence is of particular interest. Two different convergence studies are 
shown here. The numerical scheme used in each one is the appropriate one for the 
type of calculation. However, the results are independent of the choice of scheme, 
and the particular choice is determined only on the basis of efficiency. Consider first 
the case of a multiple-helicity tearing mode calculation modeling a tokamak disrup- 
tion. For the particular case presented here, the equilibrium is characterized by a q- 
profile q = 1.344[ 1 + (r/0.65) ] 618 ‘.‘3.2’. The value of S considered is 10’. The 
equilibrium is linearly unstable to the (m = 2; II = 1) and (nz = 3; n = 2) tearing 
modes. Both modes are initially perturbed with initial island widths IV:,, = 10 -‘, 
?V;,, = 10P3. Details on the results of this calculation have been reported elsewhere 
[4]. Here, we will concentrate on the convergence studies with respect to number 
of modes. In Fig. 4(a) the magnetic energy of the dominant mode (m = 2; n = 1) is 
plotted as a function of time when 11, 48, 106, and 191 modes are included in the 
calculation. The number of radial grid points is 200 for each case. The total 
cumulative energy-balance error AE, is similar for the four cases, growing to only 
10e4 at the end of the calculation. A strong destabilization effect is observed when 
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FIG. 4. Evoiution of the (m =2; n = 1 ) magnetic energ] for a mu!:iple-helicity tearing mode 
calculation and the (m = 5; n = 2) kinetic energy for a multiple-helicity rippiing mode calculation where 
different numbers of modes are included in the computations. The number of grid points is 206 in the 
first case and 227 in the second. 

we increase the number of modes, in agreement with a proposed analytical model 
[8]. This destabilization cannot be seen when 11 or 48 modes are included In the 
computation Moreover, the destabilization is stronger when I91 modes are 
included. suggesting that additional modes would be still more destabilizing. This is 
consistent with the fact that the destabilization mechanism is due to the high+1 tur- 
bulence. Converged results can be obtained with present calculations up to a certain 
time f -- 70Qr,, for the case shown in Fig. 4(a). To try to go further in time requires 
more modes than our present computer storage permits. 

A similar convergence study is shown for a case of resistivity-driven turbuisnce in 
Fig. 4(b). As this process is dominantly electrostatic, the kinetic energy Is the 
relevant diagnostic. The dominant mode is the (m = 5; n = 2), and the average 
resistivity profile is held constant in time in such a -way that saturation can be 
reached only by nonlinear effects (no quasi-linear saturation) [7]~ This procedure 
can be physically justified by the balance of ohmic heating and thermal diffusion rn 
the experiment. The equilibrium is characterized by a q-profile 4 = I+ (r.1’0.632\‘: 
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S= lo’, and j,, = 2.5. All the modes present in the calculation are initially pertur- 
bed using Eq. (11) with WI= lo-*. It is clear that at least 49 modes are needed to 
reach saturation, and reasonable converged results are obtained with 108 modes. 
Here, we use a radial grid of 227 points, most of them concentrated in the region 
0.7 < r < 1. The 49 mode case is the same as the one referred to in Fig. 1. 

Three main conclusions can be extracted from these studies. First, the destabiliz- 
ing or stabilizing effect observed when more modes are added is due to the par- 
ticular dynamics of the problem and not to the numerical scheme. To get a reliable 
result, a careful convergence analysis with respect to the number of modes is always 
needed. Second, the choice of scheme is given by the level of turbulence in each par- 
ticular case, which reflects the dominance of linear or nonlinkar terms during the 
calculation. Third, full nonlinear 3D calculations can be carried out at present for 
only a limited set of parameters. More storage is needed to expand the region in 
which these calculations can be performed. 

Finally, Fig. 5 shows convergence studies with respect to the number of radial 
grid points. The physical parameters for the cases shown are the same as the ones 
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FIG. 5. The same as Fig. 4, varying the number of radial grid points used in the computations. The 
number of modes included is 106 in the first case and 108 in the second. 



used in the mode convergence studies. The number of modes included is 106 for the 
tearing mode calculations and 108 for the rippling mode calculations, since it is 
clear from the mode convergence studies that reasonable converged results are 
obtained with these sets of modes. It is apparent that, for the disruption calculation, 
even 100 grid points are enough to show destabilization. However, for the case of 
resistivity-driven turbulence, the calculation cannot be carried out with < 200 grid 
points because of the radial localization of the modes. The differences are much 
smaller than in the case of mode convergence. 

5. CONCLUSIONS 

Two different time integration schemes are used to solve a reduced set of resistive 
MHD equations, including diamagnetr ‘c and thermal force effects. The most!y- 
explicit scheme is second-order accurate in time and is explicit, except for convec- 
tive and perpendicular diffusive terms, while the mostly-implicit scheme is first- 
order accurate in time and is fully implicit for linear terms and exphcit for nonhnear 
terms Both schemes use a Fourier representation in the angular variables and finite 
difference in the radial coordinate. The solutions obtained from the two schemes are 
the same and differ only in efficiency. 

The mostly-implicit scheme is always more efficient for linear calculations. The 
relative efficiency of both schemes for nonlinear calculations depends on the 
problem being studied. For cases where the nonlinear terms dominate over the 
hnear terms early in the calculation, like the nonlinear interaction of tearing mcdes. 
the explicit scheme is. in general, more efficient. Conversely, the implicit scheme is 
more efficient in cases where the linear terms dominate over the nonlinear terms 
during the whole evolution, reaching a saturated steady state, like the nonlinear 
evolution of rippling modes. Finally, there are some cases in whtch the implicit 
scheme is more appropriate at the beginning of the calculation, but at some time 
during the evolution, the nonlinear terms dominate over the linear ones. making it 
advantageous to switch to the explicit scheme during the calculation. 

Convergence studies with respect to the number of radial grid points and 16th 
respect to the number of modes included in the computations are needed to verify 
he solution. Both tearing mode driven disruption calculations and satcrated 
rippling mode calculations require a large numbe of modes. The addition of modes 
to the representation in the tearing mode disruption increases the level o:T’ 
destabihzation. It can be seen that this is not a characteristic of the numericai 
scheme since the addition of modes to the rippling mode calculation provides 
additional stabilization and, ultimately, a converged soiution. The differen-i 
behavior is due to the basic dynamics of the problem, not to the numerical 
implementation. 
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